Thalamocortical Relations
نویسنده
چکیده
The thalamus is a paired structure joined at the midline and located at the center of the brain (Figure 10.1 ). Each half is roughly the size of a walnut. The main part of the thalamus is divided into a number of discrete regions, known as relay nuclei. These contain the relay cells that project to the cerebral cortex. (In this chapter, cortex refers to neocortex, which does not include the hippocampal for mation or olfactory cortex.) Lateral to this main body of the thalamus is the thalamic reticular nucleus ( TRN in Figure 10.1 ), which fits like a shield alongside the body of the main relay nuclei of the thalamus. The thalamic reticular nucleus is comprised entirely of GABAergic neurons that do not innervate cortex but instead innervate thalamic relay cells. In Figure 10.1 , all but the front part of the thalamic reticular nucleus has been cut away to reveal the relay nuclei. Strictly speaking, the relay nuclei are the dorsal thalamus, while the thalamic reticular nucleus is part of the ventral thalamus; here, dorsal and ventral reflect embryonic origin rather than relative location in the adult, meaning that the relay nuclei and thalamic reticular nucleus have different developmental origins. Unless otherwise specified, thalamus refers to the relay nuclei of the dorsal thalamus. Virtually all information reaching the cortex must pass through and be relayed by the thalamus. Thus anything we are consciously aware of and all of our perceptions of the outside world depend on thalamic relays. This relay is dynamically controlled by behavioral states and processes, including attentional demands. Each of the main relay nuclei shown in Figure 10.1 innervate one or a small number of cortical areas and, as far as we know, every area of cortex receives a thalamic input. The thalamus is there not just to get peripheral information to the cortex, but it continues to play a vital role in the further processing of this information by the cortex. Where thalamocortical relationships are understood (e.g., the projection of the lateral geniculate nucleus to the primary visual cortex), the thalamic input plays a major role in determining the functional properties of the cortical target area. It has been shown that if retinal inputs in the ferret are diverted into the medial geniculate nucleus instead of the normal auditory inputs, the auditory cortex acquires visual responsiveness and organizes orientation specific domains normally seen only in the visual cortex (Sharma, Angelucci, & Sur, 2000 ). Since all thalamic nuclei innervate cortex and all cortical areas are thus innervated, this might suggest that the functional properties of any cortical area follow its thalamic input rather than inputs from other cortical areas. This is a rather subversive idea that runs counter to the traditional dogma that cortical processing depends solely on direct cortico cortical pathways. Cortico thalamo cortical pathways play a heretofore neglected and perhaps dominant role in cortical functioning. Figure 10.1 Schematic view of the right thalamus of the human. Shown are the main relay nuclei plus the thalamic reticular nucleus (TRN), of which only the anterior portion is visible; the remainder has been removed to reveal the thalamic relay nuclei. Normally, the thalamic reticular nucleus extends the length of thalamus as a thin shield closely apposed to the lateral surface of the relay nuclei. Abbreviations: A, Anterior Nuclei; CM, Central Medial Nucleus; IL, Intralaminar Nuclei; LD, Lateral Dorsal Nucleus; LGN, Lateral geniculate Nucleus; LP or PO, Lateral Posterior or Posterior Nucleus; MD, Medial Dorsal Nucleus; MGN, Medial Geniculate Nucleus; MI, Midline Nuclei; P, pulvinar; TRN, thalamic reticular nucleus; VA, Ventral Anterior Nucleus; VL, Ventral Lateral Nucleus; VPL, Ventral Posterolateral Nucleus; VPM, Ventral Posteromedial Nucleus.
منابع مشابه
The Histological Evidences for Developmental Alternations in the Transmitting Time of Impulses along the Thalamocortical Tract
Change in transmitting time of impulses along axons is traditionally attributed to two parameters: the myelin formation and the diameter of neurite, both rising during the postnatal development. In the previous study, we showed that conduction velocity of the fibers projecting from the thalamus to the layer IV of the somatosensory (barrel) cortex increases as a function of age. However, the con...
متن کاملThalamocortical connections of the primary somatosensory cortex
Although each subdivision of primary somatosensory cortex (SI) receives dense input from the thalamus, but the exact location and type of information that the fibers convey have not been identified yet. In the present study, the exact source of thalamocortical fibers to areas 2 and 3b was investigated using tract-tracing techniques. Following injection of tracer into area 3b, labeled neurons ...
متن کاملThalamocortical synaptic relations: a review with emphasis on the projections of specific thalamic nuclei to the primary sensory areas of the neocortex.
متن کامل
Specific and Non-Specific Thalamocortical Afferents to the Whisker–Related Sensory Cortical Region in Rats with Congenital Hypothyroidism
Background & Aims: Thyroid hormones are of great importance in the development of the central nervous system. Congenital hypothyroidism may affect the reorganization of specific and non-specific thalamocortical afferents to whisker–related sensory (wS1) corticol region in rats. Methods: Congenital hypothyroidism was induced by adding propylthiouracil (PTU) (25 ppm) to the rats...
متن کاملA Thalamocortical Neural Mass Model of the EEG during NREM Sleep and Its Response to Auditory Stimulation
Few models exist that accurately reproduce the complex rhythms of the thalamocortical system that are apparent in measured scalp EEG and at the same time, are suitable for large-scale simulations of brain activity. Here, we present a neural mass model of the thalamocortical system during natural non-REM sleep, which is able to generate fast sleep spindles (12-15 Hz), slow oscillations (<1 Hz) a...
متن کاملLeading role of thalamic over cortical neurons during postinhibitory rebound excitation.
The postinhibitory rebound excitation is an intrinsic property of thalamic and cortical neurons that is implicated in a variety of normal and abnormal operations of neuronal networks, such as slow or fast brain rhythms during different states of vigilance as well as seizures. We used dual simultaneous intracellular recordings of thalamocortical neurons from the ventrolateral nucleus and neurons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009